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Difference Pattern Beam Steering of Coupled,
Nonlinear Oscillator Arrays

T. Heath

Abstract—In this letter, it is shown how to extend York’s phase-
shifterless beam steering technique to difference pattern scanning
for monopulse applications. By making a simple modification to the
coupling between the central elements of a one-dimensional array,
the effective equivalence of the steered sum and difference prob-
lems is established.

Index Terms—Beam steering, coupled oscillators, difference pat-
terns, monopulse, synchronization.

I. INTRODUCTION

QUASI-OPTICAL arrays of coupled, nonlinear oscillators
show promise of realizing low-cost, low-loss, compact
devices operating at millimeter wavelengths. Exploiting

the interactions between array elements has enabled the elim-
ination of lossy components such as phase shifters and corpo-
rate feeds while maintaining a coherent, controllable radiation
pattern. In 1993, Liao and York proposed and demonstrated a
novel, phase-shifterless beam steering method [1], [2] that re-
lied on the synchronization properties of coupled, nonlinear os-
cillators. Although alternative schemes such as inter-injection
locking had been proposed [3], [4], York’s technique did not re-
quire the use of external signals. Simply by detuning the two
end oscillators’ natural frequencies relative to that of the inte-
rior oscillators, they were, in principle, able to establish phase
gradient values between90 regardless of the number of array
elements. In addition, York and collaborators developed a dis-
crete, nonlinear model to describe the array dynamics [1]–[5].
Recently, the discrete, nonlinear phase model had been shown
to be analytically tractable for certain interesting cases of the
beam steering problem [6], [7]. However, this analytic and ex-
perimental progress has been limited to steering the sum pat-
tern. To date, difference pattern beam steering using small arrays
of coupled, nonlinear oscillators has relied on injection locking
with external signals [8]. Whereas sum patterns are crucial to
target acquisition, difference patterns are important for accurate
tracking.

This paper demonstrates the possibility of using York’s beam
steering method to scan difference patterns for monopulse ap-
plications. To this end, a simple modification to the coupling
between the two central elements is required. In addition, the
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Fig. 1. One-dimensional array with nearest neighbor coupling. The two
“fictitious” elements are represented by the dashed, unfilled circles. Connecting
the two middle elements [j = N=2 andj = (N=2) + 1], the central coupling
link is prominently displayed.

stability properties of the sum and difference pattern solutions
are shown to be identical.

II. SUM PATTERN BEAM STEERING

To illustrate the similarity between the sum and difference
pattern steering problems, a brief review of sum pattern results
is provided first. The system under consideration is a 1-dimen-
sional chain of nonlinear oscillators with nearest-neighbor
coupling. Equations describing the time evolution of the oscil-
lator phases are given by [5]

(1)

where and where the “fictitious” elements and
have been introduced for notational convenience (Fig. 1).

Since the two end elements and have only a single nearest
neighbor, the array boundary conditions are

(2)

thereby eliminating the appropriate terms appearing in (1).
The coupling strength, coupling phase and oscillator natural
frequency are represented by, , and , respectively.

For sum pattern beam steering, a spatially uniform phase gra-
dient solution, , to (1) is desired. Substituting
such a solution into (1)

(3)

where

otherwise.

(4)
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Demanding (for simplicity) a time-independent phase gradient
(i.e., ) and solving for the oscillator natural frequencies,
the following conditions must be satisfied in order to establish
a spatially uniform phase gradient across the array

(5)

where denotes an arbitrary reference frequency and

(6)

Equation (5) describes how to beam steer the coupled oscillator
array by actively manipulating only two of the oscillator nat-
ural frequencies. As a result, exploiting the dynamical interac-
tions between array elements has led to a significant reduction in
the number of controls required for beam steering. The viability
of this approach has been demonstrated in several experiments
[2], [9]–[13].

In order to be a practical beam steering method, the desired
solutions must be robust with respect to small perturbations, i.e.,
they must be stable solutions of (1). This limits the range of
physically realizable scan angles. Substituting perturbed solu-
tions, where , into (1), a set of
coupled, linear differential equations describing the evolution of
the perturbations is obtained

(7)

where

(8)

and the array boundary conditions imply and
. The eigenvalues of (7) describe how the perturbations along

and away from the desired solution evolve in time. A stable
solution requires eigenvalues with negative real parts.
Closed-form expressions [6], [7] for the eigenvalues of (7) are
given by

(9)

where . Inspection reveals that (if )
the range of stable, spatially uniform phase gradients are

which, for half-wavelength spacing between the array ele-
ments, implies a maximum scan range of30 off broadside.

III. D IFFERENCEPATTERN BEAM STEERING

For a difference pattern, there must be aphase shift between
the two halves of the array. This is in addition to whatever uni-
form phase gradient must be imposed for beam steering (Fig. 2).
In what follows, it is assumed that the coupled oscillator array
possesses an even number of elements.

Steered difference pattern solutions to (1) are given by

(10)

(a)

(b)

Fig. 2. Phase distribution across the array for a steered (a) sum and (b)
difference pattern. Note the difference in vertical scale; the two distributions
share the same slope. The array length has been normalized to unity.

where

(11)

Substituting these solutions into (1) and using some basic
trigonometry

(12)

where the boundary conditions remain

(13)

Apart from a change in sign for certain terms in the
and equations, (12) is identical to those arising
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Fig. 3. Steered difference pattern for aN = 20 element array with
half-wavelength spacing. Additional parameter values were:� = �=3, k = 1,
and� = 0 (except, of course, for the coupling phase of the central link, which
was� = �). The oscillator natural frequencies were adjusted according to (5).
In integrating (1), random initial conditions were used.

in the steered sum pattern analysis, i.e., (3). A simple change to
the coupling phase of the center link

(14)

(while otherwise) renders (3) and (12) exactly iden-
tical. Consequently, the desired difference pattern solution can
be beam steered by the same scheme used for beam steering the
sum pattern, i.e., by detuning the end elements according to (5).
Fig. 3 demonstrates this for a 20-element array.

What remains is to show that the sum and difference pattern
solutions share the same stability properties and, therefore, the
same scan range. Perturbations to the difference pattern state
evolve according to

(15)

where

(16)

(17)

(18)

Using the above definitions of the coupling phases for the differ-
ence pattern, it is straightforward to show that (15) is identical
to (7). Thus, the stability matrix associated with the steered dif-
ference pattern solutions is the same as that encountered in the
steered sum pattern problem. Consequently, all of the previous
results (relaxation rates, scan range, bifurcation points, etc.) of
the sum pattern stability analysis holds for the difference pattern
as well.

IV. CONCLUSION

It was shown that a difference pattern can be steered ac-
cording to the York method by introducing a phase shift
to the central coupling link of a one-dimensional coupled
oscillator array having an even number of elements. Moreover,
the stability properties of the steered sum and difference pattern
solutions were shown to be identical; consequently, they share
the same range of stable scan angles and settling rates. This
work extends the capabilities of York’s phase-shifterless beam
steering method to include monopulse applications. Although
this paper focused on adjusting the coupling phase, reversing
the sign of the central link’s coupling strength (i.e., altering

instead of ) is an alternative, equivalent approach. Efforts
are currently underway to extend these results to two-dimen-
sional arrays incorporate sidelobe reduction via the oscillator
amplitude dynamics [14], [15], “hopping” between sum and
difference patterns and time-dependent scanning.
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