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Difference Pattern Beam Steering of Coupled,
Nonlinear Oscillator Arrays

T. Heath

Abstract—n this letter, it is shown how to extend York’s phase- t
shifterless beam steering technique to difference pattern scanning

for monopulse applications. By making a simple modification to the 8 & a_ s .ﬁ. % @.

coupling between the central elements of a one-dimensional array,
the effective equivalence of the steered sum and difference prob- &

lems is established.

Index Terms—Beam steering, coupled oscillators, difference pat- Cenier coapling link
terns, monopulse, synchronization.

Fig. 1. One-dimensional array with nearest neighbor coupling. The two
“fictitious” elements are represented by the dashed, unfilled circles. Connecting
I. INTRODUCTION the two middle elementg [= N/2 andj = (N/2) + 1], the central coupling
link is prominently displayed.

UASI-OPTICAL arrays of coupled, nonlinear oscillators
Q show promise of realizing low-cost, low-loss, compact . . ) .

devices operating at millimeter wavelengths. Exploiting;b'“ty properties of the sum and difference pattern solutions
the interactions between array elements has enabled the e
ination of lossy components such as phase shifters and corpo-
rate feeds while maintaining a coherent, controllable radiation
pattern. In 1993, Liao and York proposed and demonstrated &o illustrate the similarity between the sum and difference
novel, phase-shifterless beam steering method [1], [2] that ggattern steering problems, a brief review of sum pattern results
lied on the synchronization properties of coupled, nonlinear ds-provided first. The system under consideration is a 1-dimen-
cillators. Although alternative schemes such as inter-injectigional chain of ¥ nonlinear oscillators with nearest-neighbor
locking had been proposed [3], [4], York’s technique did not reoupling. Equations describing the time evolution of the oscil-
quire the use of external signals. Simply by detuning the twator phases are given by [5]
end oscillators’ natural frequencies relative to that of the inte-

> shown to be identical.

Il. Sum PATTERN BEAM STEERING

rior oscillators, they were, in principle, able to establish phase ¢j =wj +k[sin(pj41 — 5 + P j41)

gradient values betweer9(° regardless of the number of array + sin(gj_1 — ¢; + 85 —1)] (1)
elements. In addition, York and collaborators developed a dis-

crete, nonlinear model to describe the array dynamics [1]-[5fherej = 1, ..., N and where the "fictitious” elements and

Recently, the discrete, nonlinear phase model had been shan,1 have been introduced for notational convenience (Fig. 1).

to be analytically tractable for certain interesting cases of tince the two end elements and¢ y have only a single nearest

beam steering problem [6], [7]. However, this analytic and exeighbor, the array boundary conditions are

perimental progress has been limited to steering the sum pat-

tern. To date, difference pattern beam steering using small arrays $o=¢1 — P10

of coupled, nonlinear oscillators has relied on injection locking PNt =N — P, N1 (2)

with external signals [8]. Whereas sum patterns are crucial to

target acquisition, difference patterns are important for accurdf€reby eliminating the appropriate terms appearing in (1).

tracking. The coupling strength, coupling phase and oscillator natural
This paper demonstrates the possibility of using York’s beafi¢quency are represented by®, andw, respectively.

steering method to scan difference patterns for monopulse apEor sum pattern beam steering, a spatially uniform phase gra-

plications. To this end, a simple modification to the couplingientsolutiong; = ¢1+(j—1)¢, to (1) is desired. Substituting

between the two central elements is required. In addition, tRECh a solution into (1)

¢j = wj +k[sin(8 + @, j41) —sin(6 — €;,;-1)]  (3)
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Demanding (for simplicity) a time-independent phase gradient 8
(i.e., 6 = 0) and solving for the oscillator natural frequencies,
the following conditions must be satisfied in order to establish
a spatially uniform phase gradient across the array

50 b

W; =w + k[élyj Sin(9 + ‘I)) - 6N,j Sin(9 - (I))] (5)

wherew denotes an arbitrary reference frequency and =

1 i=y
Equation (5) describes how to beam steer the coupled oscillatol
array by actively manipulating only two of thg oscillator nat-

20+

Element phase (degrees)

ural frequencies. As a result, exploiting the dynamical interac- o o1 oz 95 4 05 o5 07 08 09 I
tions between array elements has led to a significant reduction in
the number of controls required for beam steering. The viability Element position

of this approach has been demonstrated in several experiments

[2], [9]-[13]. @

In order to be a practical beam steering method, the desiret 20 T
solutions must be robust with respect to small perturbations, i.e. /
they must be stable solutions of (1). This limits the range of @ -] ]
physically realizable scan angles. Substituting perturbed solu- &
tions,¢; = ¢1 + (j — 1)8 + n; wheren; < 1, into (1), a set of _?6)0
coupled, linear differential equations describing the evolution of 5 1
the perturbations is obtained 2

<
. =" . J
7j = anj+1 + by +enj— o = 7
P]
=
where 8 |
Z3)
a =kcos(6 + @)
c= k COS(Q - (P) 00 0j1 0f2 0.‘3 0{4 0?5 0?6 0:7 0.‘8 0?9 1

=—(a+c) ®)
L Element position
and the array boundary conditions imply = n, andnyy1 =

1~ . The eigenvalues of (7) describe how the perturbations along ()

and away from the desired solution evolve in time. A stablgg. 2. Phase distribution across the array for a steered (a) sum and (b)

solution requiresV — 1 eigenvalues with negative real partstlhfference pattern. Note the difference in vertical scale; the two distributions
Share the same slope. The array length has been normalized to unity.

Closed-form expressions [6], [7] for the eigenvalues of (7) are

given by
where
An = —2k cos @ cos ® [1 — cos (ﬂ) \/1 — tan? @ tan? 9} N
N , 7 > 5
© hy = . (11)
wheren = 1, ..., N—1.Inspection reveals that @ifcos 8 > 0) 0, s< o

the range of stable, spatially uniform phase gradient$éare _ . . . :
« /2 which, for half-wavelength spacing between the array e|§__ubst|tut|ng these solutions into (1) and using some basic
ments, implies a maximum scan ranget80° off broadside. trigonometry

$j = wj + & [(=1)% /2 sin(6 + ;, j41)

I1l. DIFFERENCEPATTERN BEAM STEERING 5
— (=1)% @241 6in(f — (I)j,j—l)] (12)

For a difference pattern, there must behase shift between
the two halves of the array. This is in addition to whatever univhere the boundary conditions remain
form phase gradient must be imposed for beam steering (Fig. 2).
In what follows, it is assumed that the coupled oscillator array & — {97 (4, 4)=(1,0)
possesses an even number of elements. J -6, (i,7)=(N, N+1).
Steered difference pattern solutions to (1) are given by

(13)

Apart from a change in sign for certain terms in the= N/2
;=1 + (G —1D0+hy (10) andy = (N/2) + 1 equations, (12) is identical to those arising



HEATH: DIFFERENCE PATTERN BEAM STEERING

Relative intensity (dB)

=20 0 20 40 60

Angle off broadside (degrees)

345

IV. CONCLUSION

It was shown that a difference pattern can be steered ac-
cording to the York method by introducing & phase shift
to the central coupling link of a one-dimensional coupled
oscillator array having an even number of elements. Moreover,
the stability properties of the steered sum and difference pattern
solutions were shown to be identical; consequently, they share
the same range of stable scan angles and settling rates. This
work extends the capabilities of York’s phase-shifterless beam
steering method to include monopulse applications. Although
this paper focused on adjusting the coupling phase, reversing
the sign of the central link’s coupling strength (i.e., altering
k instead of®) is an alternative, equivalent approach. Efforts
are currently underway to extend these results to two-dimen-
sional arrays incorporate sidelobe reduction via the oscillator
amplitude dynamics [14], [15], “hopping” between sum and

Fig. 3. Steered difference pattern for’d = 20 element array with difference patterns and time-dependent scanning.

half-wavelength spacing. Additional parameter values were: /3, k = 1,
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